Fully Compressive Tides in Galaxy Mergers

نویسندگان

  • F. Renaud
  • C. M. Boily
چکیده

The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters, tidal dwarf galaxies), instead of destroying them. We perform N -body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (≈ 15% of the stellar mass) nor their duration (∼ 10 yr) are strongly affected by changes in the progenitors’ configurations and orbits. Moreover, we show that individual clumps of matter can enter compressive regions several times in the course of a simulation. We speculate that this may spawn multiple star formation episodes in some star clusters, through e.g., enhanced gas retention. Subject headings: galaxies: evolution — galaxies: interactions — galaxies: starburst — galaxies: star clusters — stars: formation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Star cluster survival and compressive tides in Antennae-like mergers

Gravitational tides are widely understood to strip and destroy galactic substructures. In the course of a galaxy merger, however, transient totally compressive tides may develop and prevent star forming regions from dissolving, after they condensed to form clusters of stars. We study the statistics of such compressive modes in an Nbody model of the galaxy merger NGC 4038/39 (the Antennae) and s...

متن کامل

Substructures formation induced by gravitational tides ?

Physics lectures always refer to the tides as a disruptive effect. However, tides can also be compressive. When the potential of two galaxies overlap, as happens during a merger, fully compressive tides can develop and have a strong impact on the dynamics of substructures such as star clusters or tidal dwarf galaxies. Using N -body simulations of a large set of mergers, we noticed the importanc...

متن کامل

Stellar Populations in the Central Galaxies of Fossil Groups

It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...

متن کامل

Theory of galaxy dynamics in clusters and groups

Analytical estimates of the mass and radial dependence of the rates of galaxy mergers and of tidal interactions are derived for clusters and groups of galaxies, taking into account the tides from the system potential that limit the sizes of galaxies. Only high mass galaxies undergo significant major merging before being themselves cannibalized by more massive galaxies. Strong tides from the gro...

متن کامل

The Hierarchical Origin of Galaxy Morphologies

We report first results from a series of N-body/gasdynamical simulations designed to study the origin of galaxy morphologies in a cold dark matter-dominated universe. The simulations include star formation and feedback and have numerical resolution sufficiently high to allow for a direct investigation of the morphology of simulated galaxies. We find, in agreement with previous theoretical work,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009